1. EGMS ISL1 INPUT: "AND" ISLAND INPUTS FROM ALL TRACKS. NOTE: WHEN THIS INPUT IS DE-ENERGIZED THE XR INPUT ON TB2, 9 & 10 MUST ALSO BE DE-ENERGIZED BEFORE THE EXIT GATES MAY BE DRIVEN DOWN.

2. EGMS ISL2 INPUT: MAY BE USED FOR STAND ALONE ISLAND INPUT. THIS INPUT IS NOT DEPENDENT UPON THE STATUS OF XR INPUT ON TB2, 9 & 10. THIS INPUT MUST BE FIELD SELECTED AND ENABLED DURING EGMS SETUP.

3. ALL WIRING TO EGMS TO BE #16 AWG FLEX.

4. ENTRANCE GATE HOLD (EGH) CAN BE PROGRAMMED AS A NORMALLY ENERGIZED OR NORMALLY DE-ENERGIZED OUTPUT.

5. NOTES
NOTES:
1. DIMENSIONS ON THIS PAGE ARE SHOWN TO PROVIDE GUIDANCE FOR CONSTRUCTION CREWS AND FUTURE MAINTENANCE REPAIRS.
2. REFER TO SAFETRAN EGMS STANDARDS AND RECOMMENDED PRACTICES FOR LOOP LAYOUT DESIGN DETAIL.
3. SAFETRAN EGMS JUNCTION BOX INSTALLED ON TOP OF EACH FOUNDATION.
4. INSTALL SAFETRAN 6 PAIR #18 CABLE FROM JUNCTION BOX TO BUNGALOW.
5. E/R = EDGE OF ROAD.

1. Dimensions on this page are shown to provide guidance for construction crews and future maintenance repairs.
2. Refer to Safetrans EGMS standards and recommended practices for loop layout design details.
3. Safetrans EGMS junction box installed on top of each foundation.
4. Install Safetrans 6 pair #18 cable from junction box to bungalow.
5. E/R = edge of road.

Loop Placement Sketch

Loop Parameters

<table>
<thead>
<tr>
<th>Loop</th>
<th>Loop Lead-In</th>
<th>Loop Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25'</td>
<td>33'</td>
</tr>
<tr>
<td>2</td>
<td>25'</td>
<td>33'</td>
</tr>
<tr>
<td>3</td>
<td>25'</td>
<td>33'</td>
</tr>
<tr>
<td>4</td>
<td>25'</td>
<td>33'</td>
</tr>
<tr>
<td>5</td>
<td>75'</td>
<td>41'</td>
</tr>
</tbody>
</table>

Loop Sizes

- Loop 1: 33', 25'
- Loop 2: 33', 25'
- Loop 3: 33', 25'
- Loop 4: 33', 25'
- Loop 5: 41', 75'
- Loop 6: 41', 75'

NOTES:

- Dimensions on this page are shown to provide guidance for construction crews and future maintenance repairs.
- Refer to Safetrans EGMS standards and recommended practices for loop layout design details.
- Safetrans EGMS junction box installed on top of each foundation.
- Install Safetrans 6 pair #18 cable from junction box to bungalow.

Loop Parameters

<table>
<thead>
<tr>
<th>Loop</th>
<th>Loop Lead-In</th>
<th>Loop Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25'</td>
<td>33'</td>
</tr>
<tr>
<td>2</td>
<td>25'</td>
<td>33'</td>
</tr>
<tr>
<td>3</td>
<td>25'</td>
<td>33'</td>
</tr>
<tr>
<td>4</td>
<td>25'</td>
<td>33'</td>
</tr>
<tr>
<td>5</td>
<td>75'</td>
<td>41'</td>
</tr>
</tbody>
</table>

Loop Sizes

- Loop 1: 33', 25'
- Loop 2: 33', 25'
- Loop 3: 33', 25'
- Loop 4: 33', 25'
- Loop 5: 41', 75'
- Loop 6: 41', 75'

NOTES:

- Dimensions on this page are shown to provide guidance for construction crews and future maintenance repairs.
- Refer to Safetrans EGMS standards and recommended practices for loop layout design details.
- Safetrans EGMS junction box installed on top of each foundation.
- Install Safetrans 6 pair #18 cable from junction box to bungalow.

Loop Parameters

<table>
<thead>
<tr>
<th>Loop</th>
<th>Loop Lead-In</th>
<th>Loop Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25'</td>
<td>33'</td>
</tr>
<tr>
<td>2</td>
<td>25'</td>
<td>33'</td>
</tr>
<tr>
<td>3</td>
<td>25'</td>
<td>33'</td>
</tr>
<tr>
<td>4</td>
<td>25'</td>
<td>33'</td>
</tr>
<tr>
<td>5</td>
<td>75'</td>
<td>41'</td>
</tr>
</tbody>
</table>

Loop Sizes

- Loop 1: 33', 25'
- Loop 2: 33', 25'
- Loop 3: 33', 25'
- Loop 4: 33', 25'
- Loop 5: 41', 75'
- Loop 6: 41', 75'

NOTES:

- Dimensions on this page are shown to provide guidance for construction crews and future maintenance repairs.
- Refer to Safetrans EGMS standards and recommended practices for loop layout design details.
- Safetrans EGMS junction box installed on top of each foundation.
- Install Safetrans 6 pair #18 cable from junction box to bungalow.

Loop Parameters

<table>
<thead>
<tr>
<th>Loop</th>
<th>Loop Lead-In</th>
<th>Loop Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25'</td>
<td>33'</td>
</tr>
<tr>
<td>2</td>
<td>25'</td>
<td>33'</td>
</tr>
<tr>
<td>3</td>
<td>25'</td>
<td>33'</td>
</tr>
<tr>
<td>4</td>
<td>25'</td>
<td>33'</td>
</tr>
<tr>
<td>5</td>
<td>75'</td>
<td>41'</td>
</tr>
</tbody>
</table>

Loop Sizes

- Loop 1: 33', 25'
- Loop 2: 33', 25'
- Loop 3: 33', 25'
- Loop 4: 33', 25'
- Loop 5: 41', 75'
- Loop 6: 41', 75'

NOTES:

- Dimensions on this page are shown to provide guidance for construction crews and future maintenance repairs.
- Refer to Safetrans EGMS standards and recommended practices for loop layout design details.
- Safetrans EGMS junction box installed on top of each foundation.
- Install Safetrans 6 pair #18 cable from junction box to bungalow.

Loop Parameters

<table>
<thead>
<tr>
<th>Loop</th>
<th>Loop Lead-In</th>
<th>Loop Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25'</td>
<td>33'</td>
</tr>
<tr>
<td>2</td>
<td>25'</td>
<td>33'</td>
</tr>
<tr>
<td>3</td>
<td>25'</td>
<td>33'</td>
</tr>
<tr>
<td>4</td>
<td>25'</td>
<td>33'</td>
</tr>
<tr>
<td>5</td>
<td>75'</td>
<td>41'</td>
</tr>
</tbody>
</table>

Loop Sizes

- Loop 1: 33', 25'
- Loop 2: 33', 25'
- Loop 3: 33', 25'
- Loop 4: 33', 25'
- Loop 5: 41', 75'
- Loop 6: 41', 75'

NOTES:

- Dimensions on this page are shown to provide guidance for construction crews and future maintenance repairs.
- Refer to Safetrans EGMS standards and recommended practices for loop layout design details.
- Safetrans EGMS junction box installed on top of each foundation.
- Install Safetrans 6 pair #18 cable from junction box to bungalow.

Loop Parameters

<table>
<thead>
<tr>
<th>Loop</th>
<th>Loop Lead-In</th>
<th>Loop Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25'</td>
<td>33'</td>
</tr>
<tr>
<td>2</td>
<td>25'</td>
<td>33'</td>
</tr>
<tr>
<td>3</td>
<td>25'</td>
<td>33'</td>
</tr>
<tr>
<td>4</td>
<td>25'</td>
<td>33'</td>
</tr>
<tr>
<td>5</td>
<td>75'</td>
<td>41'</td>
</tr>
</tbody>
</table>

Loop Sizes

- Loop 1: 33', 25'
- Loop 2: 33', 25'
- Loop 3: 33', 25'
- Loop 4: 33', 25'
- Loop 5: 41', 75'
- Loop 6: 41', 75'

NOTES:

- Dimensions on this page are shown to provide guidance for construction crews and future maintenance repairs.
- Refer to Safetrans EGMS standards and recommended practices for loop layout design details.
- Safetrans EGMS junction box installed on top of each foundation.
- Install Safetrans 6 pair #18 cable from junction box to bungalow.

Loop Parameters

<table>
<thead>
<tr>
<th>Loop</th>
<th>Loop Lead-In</th>
<th>Loop Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25'</td>
<td>33'</td>
</tr>
<tr>
<td>2</td>
<td>25'</td>
<td>33'</td>
</tr>
<tr>
<td>3</td>
<td>25'</td>
<td>33'</td>
</tr>
<tr>
<td>4</td>
<td>25'</td>
<td>33'</td>
</tr>
<tr>
<td>5</td>
<td>75'</td>
<td>41'</td>
</tr>
</tbody>
</table>

Loop Sizes

- Loop 1: 33', 25'
- Loop 2: 33', 25'
- Loop 3: 33', 25'
- Loop 4: 33', 25'
- Loop 5: 41', 75'
- Loop 6: 41', 75'

NOTES:

- Dimensions on this page are shown to provide guidance for construction crews and future maintenance repairs.
- Refer to Safetrans EGMS standards and recommended practices for loop layout design details.
- Safetrans EGMS junction box installed on top of each foundation.
- Install Safetrans 6 pair #18 cable from junction box to bungalow.
TIER 1S PHASE 1
M.P. 239.70 TO M.P. 255.35 TO UPGRADE XING TO 4 QUAD WITH EGMS, VARIOUS C.P.'S

EGMS

EDMS TB1

EDMS TB2

ISOLATED POWER SUPPLY
VACANT
VACANT
VACANT
REM. IN
VACANT
VACANT
GRAPHIC TOUCH SCREEN

EGMS DETECTOR TB5

2.5" UNVACANT
2.5"

8.25"

10.75"

15
detector modules

E-1400 SYNC WIRING DETAIL FOR 12 DETECTOR MODULES

10804 NBT MJF NST

1RCVB COMM1A-H
1RCVA COMM1A-J
1TMTB COMM1A-K
1TMTA COMM1A-L
2RCVB COMM1A-W
2RCVA COMM1A-X
2TMTB COMM1A-Y
2TMTA COMM1A-Z

1SYNC OUT DET1A-CC BLU
1SYNC IN DET1A-Y ORN

2SYNC OUT DET2A-CC BLU
2SYNC IN DET2A-Y ORN

1SYNC OUT DET1A-CC BLU

1SYNC IN DET1A-Y ORN

SIGNAL DESIGN

THE OFFICE OF AUTHORITY FROM

MADE WITHOUT

MODIFICATIONS

CIRCUIT
TIER 1S PHASE 1
M.P. 239.70 TO M.P. 255.35 TO UPGRADE XING TO 4 QUAD WITH EGMS, VARIOUS C.P.'S

1. PRI 1+WHT DET1A-F
2. PRI 1-BLK DET1A-B
3. CHK 1+RED DET1A-H
4. CHK 1+GRN DET1A-M
5. PRI 2+WHT DET1A-L
6. PRI 2-BLK DET1A-R
7. CHK 2+RED DET1A-P
8. CHK 2-DET1A-K
9. PRI 3+WHT DET1A-J
10. PRI 3-BLK DET1A-DD
11. CHK 3+RED DET1A-A
12. CHK 3-DET1A-S
13. PRI 4+WHT DET1A-NN
14. PRI 4-BLK DET1A-LL
15. CHK 4+RED DET1A-W
16. CHK 4-DET1A-U
17. PRI 5+WHT DET2A-F
18. PRI 5-BLK DET2A-B
19. CHK 5+RED DET2A-H
20. CHK 5-DET2A-M
21. PRI 6+WHT DET2A-L
22. PRI 6-BLK DET2A-R
23. CHK 6+RED DET2A-P
24. CHK 6-DET2A-K

DETECTOR 1
- PR-1 CK-1
- PR-2 CK-2
- PR-3 CK-3
- PR-4 CK-4

DETECTOR 2
- PR-5 CK-5
- PR-6 CK-6
- PR-7 CK-7
- PR-8 CK-8
TIER 1S PHASE 1
M.P. 239.70 TO M.P. 255.35 TO UPGRADE XING TO 4 QUAD WITH EGMS, VARIOUS C.P.'S

NOTES:
1. INPUT WIRES, OUTPUT WIRES, POWER WIRES, WAVES IN SEPARATE BUNDLES.
2. INPUT WIRES, OUTPUT WIRES, POWER WIRES, WAVES IN SEPARATE BUNDLES. PUT IN SEPARATE BUNDLES.
3. INPUT WIRES, OUTPUT WIRES, POWER WIRES, WAVES IN SEPARATE BUNDLES.
TIER 1S PHASE 1
M.P. 239.70 TO M.P. 255.35 TO UPGRADE XING TO 4 QUAD WITH EGMS, VARIOUS C.P.'S

10804 NBT
MJF
NST

CHASSIS ID D8

B12-F
N12-F

B12-F1
N12-F1

SHT. 3a CONN.

B12-F2
N12-F2

B24-F1
N24-F1

B24-F2
N24-F2

B12-X
N12-X

5A 15VDC CHARGER 575RECT

380M 6C-680/800AH B17

B5
BX110-D
NX110-D

FIBER TO ACC

FIBER TO B24-F1

DC/DC CONVERTER 12V TO 24V

DC/DC CONVERTER 12V TO 24V

RACK #2 ETHERNET PORT 1 ETHERNET PORT 2 RJ45 RJ45 CAT 5e CABLE

NOTE 1:

NETWORK CABLE - 1 DENOTES TWISTED PAIR 2 POSITION WAGO BLOCK

1. NETWORK SWITCH INSTALLED BY RR.

INPUT
OUTPUT

#10

RJ45

B12-X
N12-X

B12-F
N12-F

FUSE PANEL

FIBER

AC
DC+
DC-
CHARGER

INPUT
OUTPUT

RACK #2

DATE:

09/27/12

DES:

NST

AFE:

NBT

Sh.:

10B

DOT MP:

294411S

ID:

241.28

SHIPMAN, ILLINOIS BACHMAN ROAD SPRINGFIELD SUBDIVISION

Omaha, Nebraska Office of AVP Engineering - Signal

UNION PACIFIC RAILROAD

NEW SHEET

CIRCUIT DESIGN THE OFFICE OF AUTHORITY FROM MADE WITHOUT MODIFICATIONS
TIER 1S PHASE 1
M.P. 239.70 TO M.P. 255.35 TO UPGRADE XING TO 4 QUAD WITH EGMS, VARIOUS C.P.'S

10804 NBT MJF NST

BRKR

PLYWOOD EQUIP GND BATT BSA-4 (A)

10X20 WAGO TERMINAL BLOCKS

26X20 PLYWOOD

RACK 2

A
B
C
D
E
F
G
H

ASE SWITCH

ELECTROLOGIXS

WAGO TERMINAL BLOCKS SWITCH HSR BYPASS

6 R G N

GROUND TO HOUSE

5A

SIGNAL DESIGN

THE OFFICE OF AUTHORITY FROM MADE WITHOUT MODIFICATIONS CIRCUIT

SHIPMAN, ILLINOIS
BACHMAN ROAD
SPRINGFIELD SUBDIVISION
Omaha, Nebraska
Office of AVP Engineering - Signal
UNION PACIFIC RAILROAD
CSL24128.10DX
TIER 1S PHASE 1
M.P. 239.70 TO M.P. 255.35 TO UPGRADE XING TO 4 QUAD WITH EGMS, VARIOUS C.P.'S

NEW SHEET

09/27/12

12-09-12

NBT
MJF
NST

SIGNAL DESIGN
THE OFFICE OF AUTHORITY FROM ARE NOT TO BE MODIFICATIONS CIRCUIT
TIER 1S PHASE 1
M.P. 239.70 TO M.P. 255.35 TO UPGRADE XING TO 4 QUAD WITH EGMS, VARIOUS C.P.'S

#20 #20 #20 #20 #20 #20 #20 #20 #20 #20 #20 #20 #20 #20 #20
#20 #20 #20 #20 #20 #20 #20 #20 #20 #20 #20 #20 #20 #20 #20

E2 C2 A2 E12 E4 C4 E8 C8 A8 A4 E6 C6 A6 E14 C12 C14

T B T B T B T B T B T B T B T B T B T B T B T B T B T B
AF19 AF20 AF21 AF22 AF23 AF24 AF17 AF18 AF1 AF3 AF4 AF6 AF8 AF10 AF11 AF12 AF13 AF14 AF15 AF16

VITAL 8IN-8OUT SLOT 6

309 287 L

SPARE OUTPUT 7 INPUT 1 INPUT 4 INPUT 5 INPUT 6 INPUT 2 INPUT 3 INPUT 7 INPUT 8 OUTPUT 8 OUTPUT 1 OUTPUT 2 OUTPUT 3 OUTPUT 4 OUTPUT 5 OUTPUT 6

E22 C22 E26 E24 E18 C18 A18 E20 C20 A20 A24 C24

W/BU W/S BR/Y BR/V BK/W BK/R BK/O BK/Y BK/BU

BR BR BK R O Y G BU V W SLT W/BR W/BK W/R W/O W/V W/G

1NVCOR 1BVCOR 1BVCOR 1NVCOR 1NVCOR 1BVCOR 1BVCOR 1W(S)-1E(N) 1E(N)-1W(S)-1E(N) W(S) TPR E(N) TPR

SIG STOP
TIER 1S PHASE 1

M.P. 239.70 TO M.P. 255.35 TO UPGRADE

XING TO 4 QUAD WITH EGMS, VARIOUS C.P.'S

10804 NBT MJF NST

Modification Level

Q.A. Last Level Checked

Last Level Mod This Typical

Last Level by Designer

Changed From Typical?

Rev

DU

DU

DU

Y

8/20/10

1TMLHBINTU.4

POWER SUPPLY

1

PORT1

PORT2

PORT3

PORT4

SLOT 1

SLOT 2

SLOT 3

SLOT 4

SLOT 5

SLOT 6

SLOT 7

SLOT 8

SLOT 9

SLOT 10

POWER 10A FUSE

VITAL LAMP DRIVER

BATT+

BATT-

VCOR

BATT-

VCOR

M I C R O T R A C K

1W(S)T-1E(N)T

SPARE

308 VITAL LAMP DRIVER

363 POWER SUPPLY

SPARE

ROW "AF"

WALL "A"

ROW "AF"

WALL "A"

304 VITAL LAMP DRIVER

308 VITAL LAMP DRIVER
TIER 1S PHASE 1
M.P. 239.70 TO M.P. 255.35 TO UPGRADE XING TO 4 QUAD WITH EGMS, VARIOUS C.P.'S

10804
NBT
MJF
NST

NEW SHEET

\[2W(S)T-2E(N)T\]

VITAL LAMP SUPPLY

POWER SUPPLY

SIGNAL DESIGN

THE OFFICE OF AUTHORITY FROM MADE WITHOUT MODIFICATIONS CIRCUIT

SHIPMAN, ILLINOIS
BACHMAN ROAD
SPRINGFIELD SUBDIVISION
Omaha, Nebraska
Office of AVP Engineering - Signal
UNION PACIFIC RAILROAD

CSL24128.17S

Sh.:
DOT
MP:
ID:

09/27/12
NST
NBT
10804

17
294411S
241.28
TIER 1S PHASE 1
M.P. 239.70 TO M.P. 255.35 TO UPGRADE XING TO 4 QUAD WITH EGMS, VARIOUS C.P.'S

NOTE: FOR PTC COMPATIBLE CPU JUMPER SETTINGS REFER TO ANSALDO MANUAL S1/14002 PAGE 1-26 1-27 1-28 REV. 1 DATE 8/2009
TIER 1S PHASE 1
M.P. 239.70 TO M.P. 255.35 TO UPGRADE XING TO 4 QUAD WITH EGMS, VARIOUS C.P.'S

NOTE: ALL DIMENSIONS SHOWN ARE APPROXIMATE.

NOTE: NO TEST LINKS TO BE INSTALLED WITH CROSSING LIGHTING OR GATE MECH CIRCUITRY.
Designed: 09/27/12

TIER 1S PHASE 1
M.P. 239.70 TO M.P. 255.35 TO UPGRADE XING TO 4 QUAD WITH EGMS, VARIOUS C.P.'S

NOTE: ALL DIMENSIONS SHOWN ARE APPROXIMATE.
TIER 1S PHASE 1
M.P. 239.70 TO M.P. 255.35 TO UPGRADE XING TO 4 QUAD WITH EGMS, VARIOUS C.P.'S

NEW SHEET

SECTION

NOTE: NO TEST LINKS TO BE INSTALLED WITH CROSSING LIGHTING OR GATE MECH CIRCUITRY

SEE SIGNAL STANDARD DRAWING 846120UP FOR HOUSE GROUNDING SCHEME

NOTICE: ALL DIMENSIONS SHOWN ARE APPOXIMATE.
Minimum Program Steps Report

Location and SIN

DOT Number: 294411S
Milepost Number: 241.28
Site Name: SHIPMAN, IL

SIN: 762010010016 *

* Parameter is part of office check number calculation.

MCF and Template Selection

MCF Name: GCP-T6X-02-6.mcf
MCF Revision: 26
MCFCRC: 494D2656

Template = 1D:3 Uni pairs (OCCN) *

* Parameter is part of office check number calculation.

Minimum Program Steps

MS4000 configuration
Track 1 : GCP Frequency = 114 Hz (OCCN,TCN) (Hidden) *
Track 1 : Prime UAX = IP (OCCN) (Hidden) *
Track 1 : Prime UAX Pickup = 15 sec (OCCN) (Hidden) *
Track 1 : Isl Frequency = 3.24 kHz (OCCN) (Hidden) *
Track 1 : Pickup Delay (2s +) = 2 sec (OCCN) (Hidden) *
IN 1.1 = T1 Prime UAX (OCCN) (Hidden) *
IN 1.2 = Out Of Service IP 1 (OCCN) (Hidden) *

MS4000 Predictor
Track 1 : Prime Warning Time = 40 sec (OCCN) (Hidden) *

BASIC: module configuration
Track 3/PSO 2 Slot = Track (OCCN) *
Track 4/PSO 3 Slot = Track (OCCN) *
Track 5/RIO 2 Slot = RIO (OCCN) *

PREDICTORS: track 2
Track 2 : Dax A Used = Yes (OCCN) *

PREDICTORS: track 4
Track 4 : Dax A Used = Yes (OCCN) *

GCP: track 1
Track 1 : GCP Frequency = 114 Hz (OCCN,TCN) *
Track 1 : Approach Distance = 3026 ft (OCCN,TCN) *
Track 1 : Island Distance = 133 ft (Set in Field,TCN)
GCP: track 1 prime
Track 1: Prime Warning Time = 40 sec (OCCN) *
Track 1: Prime UAX = IP (OCCN) *
Track 1: Prime UAX Pickup = 15 sec (OCCN) *

GCP: track 2
Track 2: GCP Frequency = 86 Hz (OCCN, TCN) *
Track 2: Approach Distance = 5216 ft (OCCN, TCN) *

GCP: track 2 prime
Track 2: Prime Warning Time = 40 sec (OCCN) *

GCP: track 2 Dax A
Track 2: Dax A Warning Time = 45 sec (OCCN) *
Track 2: Dax A Offset Distance = 3032 ft (OCCN) *

GCP: track 3
Track 3: GCP Frequency = 114 Hz (OCCN, TCN) *
Track 3: Approach Distance = 3026 ft (OCCN, TCN) *
Track 3: Island Distance = 133 ft (Set in Field, TCN)

GCP: track 3 prime
Track 3: Prime Warning Time = 40 sec (OCCN) *
Track 3: Prime UAX = IP (OCCN) *
Track 3: Prime UAX Pickup = 15 sec (OCCN) *

GCP: track 4
Track 4: GCP Frequency = 86 Hz (OCCN, TCN) *
Track 4: Approach Distance = 5216 ft (OCCN, TCN) *

GCP: track 4 prime
Track 4: Prime Warning Time = 40 sec (OCCN) *

GCP: track 4 Dax A
Track 4: Dax A Warning Time = 45 sec (OCCN) *
Track 4: Dax A Offset Distance = 3032 ft (OCCN) *

ISLAND: track 1
Track 1: Isl Frequency = 3.24 kHz (OCCN) *
Track 1: Pickup Delay (2s +) = 2 sec (OCCN) *

ISLAND: track 3
Track 3: Isl Frequency = 4.0 kHz (OCCN) *
Track 3: Pickup Delay (2s +) = 2 sec (OCCN) *

AND: track Anding
AND 2 Used = Yes (OCCN) *
AND 3 Used = Yes (OCCN) *

AND: AND 1 XR
AND 1 Enable Used = Yes (OCCN) *

AND: AND 2
AND 2 Track 1 = Prime (OCCN) *
AND 2 Track 2 = Prime (OCCN) *

AND: AND 3
AND 3 Track 3 = Prime (OCCN) *
AND 3 Track 4 = Prime (OCCN) *

ADVANCED: out of service
OOS Control = OOS IPs (OCCN) *

ADVANCED: out of service 2
T2 OOS Control = OOS Input 1 (OCCN) *
T3 OOS Control = OOS Input 2 (OCCN) *
T4 OOS Control = OOS Input 2 (OCCN) *

SSCC: 2
SSCC-2 Number of GPs = 2 (OCCN) *
SSCC-2 Number of GDs = 2 (OCCN) *

OUTPUT: assignment page 1
OUT 1.1 = AND 1 XR (OCCN) *
OUT 1.2 = T1 Island (OCCN) *
OUT 2.1 = T2 Dax A (OCCN) *
OUT 2.2 = T3 Island (OCCN) *

OUTPUT: assignment page 2
OUT 4.1 = T4 Dax A (OCCN) *
OUT 5.1 = AND 2 (OCCN) *
OUT 5.2 = AND 3 (OCCN) *

INPUT: assignment page 1
IN 1.1 = T1 Prime UAX (OCCN) *
IN 1.2 = Out Of Service IP 1 (OCCN) *
IN 2.2 = Out Of Service IP 2 (OCCN) *
IN 3.1 = T3 Prime UAX (OCCN) *

INPUT: assignment page 2
IN 5.1 = AND 1 XR Enable (OCCN) *
IN 5.2 = GP 1.1 (OCCN) *

IO: assignment SSCC
IN 7.1 = AND 1 XR Enable (OCCN) *
IN 7.2 = GD 1.1 (OCCN) *
IN 7.4 = GD 1.2 (OCCN) *
IN 8.2 = GD 2.1 (OCCN) *
IN 8.3 = GP 2.1 (OCCN) *
IN 8.4 = GD 2.2 (OCCN) *
IN 8.5 = GP 2.2 (OCCN) *

SEAR: inputs
SP 3.1 = General 3 (OCCN) *
SP 4.1 = General 4 (OCCN) *

SEAR: slot 1-4 inputs
IN 4.1 = Vehicle Det Hlth (OCCN) *
IN 4.2 = 3 Vehicle Detect (OCCN) *

SEAR: inputs slot 5
IN 5.3 = General 1 (OCCN) *
IN 5.4 = General 2 (OCCN) *

Express: MS4000 configuration
Track 1 : GCP Frequency = 114 Hz (OCCN,TCN) (Hidden) *
Track 1 : Prime UAX = IP (OCCN) (Hidden) *
Track 1 : Prime UAX Pickup = 15 sec (OCCN) (Hidden) *
Track 1 : Pickup Delay (2s +) = 2 sec (OCCN) (Hidden) *
IN 1.1 = T1 Prime UAX (OCCN) (Hidden) *
IN 1.2 = Out Of Service IP 1 (OCCN) (Hidden) *

Express: MS4000 Predictor
Track 1 : Prime Warning Time = 40 sec (OCCN) (Hidden) *

* Parameter is part of office check number calculation.

Check Numbers

Office Check Number: 7C64AE98
Config. Check Number: 2800E600
(Based on MCF Revision 26)

Parameters not part of office check number calculation:

Track 1 : Island Distance = 133 ft (Set in Field)
Track 3 : Island Distance = 133 ft (Set in Field)

Comments

<none>

Configuration Package File

Filename: CSL24128_294411S.pac
Path: H:\UP\Springfield Sub Tier 1 Ph. 1 11-419-1\PAC Files\MP 241.28\Date/Time: 1/12/2016 11:23:14
DT Version: 5.7.3