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Commonwealth Edison Company's Response to 
MC Squared Energy Services and Constellation New Energy ("MC-CNE") Data Request 

MC-CNE 1.01 -1.13 
Dated: July 2, 2009 

REQUEST NO. MC-CNE 1.04: 

Reference: Customer Applications Plan, footnote 5. 

The plan states that the "N" or number of customers in each research type "represents the 
number of participants required to yield a statistically valid estimate of behavioral response" and 
the footnote cites the confidence interval and confidence level. 

a. Please provide any workpapers that document the calculation of the "N"s 

b. Did ComEd consider confidence levels less than 99% (e.g. 95%) in order to minimize the 
research cost? If yes, why was 99% selected? If no, why did CornEd not consider levels 
less than 99%? 

RESPONSE: 

a. The N=200 number referenced in the customer applications plan is the estimate for the 
number of subjects plus oversampling (N=50) to account for estimated subject mortality. 
This is based upon an article in the July 2009 edition of the Electricity Journal 
2009.by Ahmad Faruqui, Ryan Hledik and Sanem Sergici entitled, "Piloting the Smart 
Grid" which is labeled as MC-CNE 1.04_Attach I. In this paper, the authors make the 
case that a reasonable sampling strategy shall include, at minimum, an N of 150 subjects 
per cell. Any N=400 number was due to bifurcated applications (see Table 2, CornEd Ex. 
4.0 at 9). 

b. No, given the workpaper referenced in (a), this question about confidence levels is no 
longer applicable. Due to an inadvertent error, the confidence levels shown in the 
customer applications plan reflect classical sampling design, which is NOT being used 
for the M&V evaluation. Instead, the M&V evaluation will be using the Bayesian 
method described in the above-referenced workpaper, from which the sample described 
in (a) is estimated. 
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Ahmad Faruqui is a Principal with 
The Brattle Group, Inc. 

IMC-CNE 1.04Attach 11 

Piloting the Smart Grid 

To address the likely trlJpact of the smart grid on 
customers, utilities, ,4:11# society as a whole, it may be 
necessary to condU<r!t~apilot. When should a pilot be 
conducted and howsMquld it be conducted? What validity 
criteria should thepilot satisfy? Here are issues to 
consider. 

Ahmad Faruqui, Rypn Hledik and Sanem Sergici 

The trilnsfor!TIative power of 
the sm~,rt Wid)s enormous, It is 
receivi~gil1!ili~h consideration 
fromitiHlitiep and commissions 
acrd~!3,~orth America, Several 

IT)~tii~erc~:Of the European Union, 
Chill.!); Japan, and other nations 
", '~>S<" 

are,~;!s'6 engaged in the same 
endellvor. 

/' 

; .'The smart grid has the potential 

• Will they respond by chan­
ging their energy use patterns? 

The answers to these questions 
will help policymakers in federal 
and state government determine 
whether the benefits of the smart 
grid will cover its costs. 

f~r revolutionizing the way we 

Sanem Sergici is Associate wW1z, ;p'~oduce and consume electricity 
The Brattle Gr,gI1P' ,';'but because it contains so many 

The views expressed in this artialti)lrit" new elements; its core value 
strictly those of the authors and'll~, proposition remains untested. 

not necessarily state or rr!fLec(.t~iJ The unanswered questions 

Ryan Hledik is Associate with The 
Brattle Group, 

I t is widely understood that the 
new services enabled by the 

smart grid will include different 
rate designs that encourage 
curtailment of peak loads and 
make more efficient use of energy. 
Examples include dynamic 
pricing and inclining block rates.! 
These innovative rate designs will 
be enhanced by various 
automating technologies such as 
Energy Orbs, programmable 
communicating thermostats 
(peTs), whole-building energy 

views of The Brattle Group, Inc., or include: 
its clients. 
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• What new services will the 
smart grid provide customers? 

• Do customers want these 
new services? 
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management systems (Auto DR), 
and in-home displays (IHDs). 

The smart grid will of course go 
beyond smart meters and rate 
design and enable renewable 
energy resources to be connected 
to the grid. This will allow 
optimal use of intermittent 
resources, such as wind, which 
often reach their peak generating 
capacity during off-peak hours. 
New off-peak loads, such as plug­
in hybrid electric vehicles, which 
reduce overall energy 
consumption and improve the 
carbon footprint, will be 
energized by the smart grid. 

T o address the likely impact 
of the smart grid on 

customers, utilities, and society as 
a whole, it may be necessary to 
conduct a pilot. When should a 
pilot be conducted and how 
should it be conducted? To be 
useful, a pilot must yield credible 
results. This requires that the pilot 
satisfy various validity criteria. 
These issues form the focus of this 
article. We provide examples 
from several recent pilots that 
involved dynamic pricing, a key 
element of the smart gird. The 
concluding section discusses how 
a hypothetical company, Smart 
Power, should go about designing 
its own pilot. 

I. Should a Pilot Be 
Conducted?2 

Policymakers should consider 
implementing a pilot if there is 
much uncertainty in the cost­
benefit analysis of proceeding 
with full-scale deployment. 

A powerful method for resolving 

uncertainty is to assess the value 
of information that would be 

generated from a pilot. This point 
is best illustrated with a case 
study. 

California suffered the worst 
energy crisis in its history in 2001. 
Most analysts attributed the crisis 
in part to the lack of demand 
response in the market design. 
When prices rose in wholesale 
markets, there was no incentive 

for retail customers to lower 
demand.rti"the,;~mmer of 2002, 
the Calif&l:'nl~ Public Utilities 
Commi~s\onjnitiated 
procetldi,ngs on demand 
response,aJvanced metering, 
anddynafuic pricing. Early in the 
proceedings, it became clear that 
the de.cision to deploy advanced 
m~tering was fraught with risk. 
Tltedeployment would be costly 

. and the benefits uncertain, as they 
t'jepended on the customers' price 
'~lasticity of demand. 

A preliminary cost-benefit 
analysis using price elasticities 
from the literature on time-of-use 
pricing (which ranged from -0.10 
to -0.30) carried out for an 

investor-owned utility showed 
that such deployment would 
provide gross benefits, ranging 
from $561 million to $2,637 
million. The cost of advanced 
metering infrastructure (AM!), 
net of operational benefits, was 
estimated to be $1,080 million. 
ThWsuggested that the net 

':ibenefits would range from a loss 
oi,$,§Ji9 million to a gain of $1,557 

"'riIUlion. In other words, the range 
o,tbenefits, at some $2 billion, is 

Classical statistics would yield 
sample sizes (using formulas such 
as those shown in Figure 1) but 
would not provide insights about 
the value of information that 
would be gleaned from the pilot. 
Thus, a decision was made to 
pursue a Bayesian approach to 
determining the optimal sam pie 
size of the pilot. If the size was zero, 
it would mean the pilot would 
provide information of no value and 
should not be pursued. 3 

G iven the wide variation in 
climatic conditions in the 

state, a decision was made to 
divide the state into four climate 
zones and estimate the potential 
diversity in customer response 
patterns. In one of the climate 
zones, a critical-peak pricing rate 
was found to have an expected 
net benefit of $331 million using 
prior information on price 
elasticities. However, there was a 
12 percent probability that the 
program would generate negative 
net benefits, as shown in Figure 2. 

Thus, there was a reasonable 
probability that the state would 
make the wrong decision in the 
absence of better information. It 

2 1040-6190/$-see front matter © 2009 Published by Elsevier Inc., doi;j1O.1016/j.tej.2009.06.012 The Electricity Journal 
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Figure 1: Classical Sampling Design 
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Figure 2: Pre· Pilot Distribution of Net Benefits 

could proceed to implement 
dynamic pricing when it was not 
warranted, thereby burdening 
ratepayers with a loss of around a 
billion dollars. Or it could chose to. 
stay with the status quo, thereby', 
denying Californians the benefits 
of dynamic pricing and 
burdening them with higher 
power costs. 

A properly drawn sample 
should improve the probability of 
making a correct decision on 
full-scale implementation of 
dynamic pricing. This involves 
three major steps: 

iEstiwating the net benefits of 
impl~menting dynamic pricing 
for·~ach of the treatments that 
looklpromising based on a 
pdori information about price 
elasticities and other aspects of 
customer behavior. 

• Estimating the costs of imple­
menting each treatment during 
the sampling phase of the study. 

• Drawing the sample to 
maximize the probability of 
making the right decision, taking 
into account the tradeoff between 
value of information and cost of 
sampling. 

The estimation of net benefits 
involves a computation of 
benefits and costs, usually as 
discounted present values over a 
planning horizon of 15 years4 

Benefits are estimated using the 
.following equation: 

-F . 
Bene fits 

= (Existing usage per customer 

x Percent change in price 

x price elasticity) 

x Number a f partici pants 

Costs are estimated using the 
following equation: 

Costs = Unit cost per partici pant 

x Number a f partici pants 

Both calculations involve 
several variables that cannot be 
predicted with certainty, and are 
best modeled in probabilistic 
terms. Monte Carlo simulation 
was used to develop the 
appropriate probability 
distributions. 

W ith the Bayesian 
approach, the following 

sampling outcomes are possible. 
If Treatment A is likely to 
generate greater net benefits 
compared to Treatment B, but 
there is significant uncertainty in 
that result, the Bayesian approach 
would recommend drawing a 
larger sample than if there is no 
uncertainty in the result. For 
instance, if A will always be better 
than B, then sampling does not 
impact the final policy decision 
and contains very little useful 
information. The Bayesian 
approach explicitly factors the 
value of information into the 
determination of the optimal 
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sample size for each treatment 

cell. It differs from the classical 
statistics approach where value of 
information does not play any 
explicit role in determining the 
sample size. The two approaches 
would give similar results if the 
prior information on net benefits 
were diffuse or uncertain. The 
more sharply focused the prior 
information, the more the two 
sampling approaches will differ. 
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Figure 3: Optimal Bayesian Sampling 
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T he Bayesian process was 
implemented using 

information from the preliminary 
analysis of net benefits for a single 
utility, scaled up to reflect 
statewide conditions, and 
information on the cost of 
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sampling various treatments as 
well as the cost of full-scale 
implementation. The net gain 
from sampling as a function of 
sample size is shown in Figure 3 
for Zone 1 with the critical peak 
pricing (CPP) rate. The curve rises 
steeply until a sample size of 50 is 
reached, and then increases at a 
decreasing rate. The maximum is 
reached at a sample size of 179, 
which would yield a net gain of 

Net benefit Zone I 
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Figure 4: Narrowing of Uncertainty Due to Sampling 

$15.2 million. In other words, a 
sample size of 179 would proF'b§e~;~~ing a smaller sample 
maximize the net benefits of siz~of 11:~, which would sacrifice 
information being generated by ",;nefgai~ of only $0.1 million. 

'B 

the sample. Once the optimal In aggregate terms, the proposed 
sample size is reached, the net sample design for the pilot was 
gain curve flattens out, with a:, estimated to have a net gain of $225 
small negative slope. The flat, million. The primary benefit of 
shape of the optimal sampling"sampling is that it will narrow the 
curve means that one can factor in prior probability distribution of 
non-economic objectives such as net benefits. This effect is shown in 
equity and equal coverage Figure 4, where the top panel 
without sacrificing economic shows the effects for Zone 1 and 
value in the process. For logistical the bottom panel shows the effects 
and budgetary reasons, the pilot for the state as a whole. A decision 

was made to pursue what came to 
be known later as the Statewide 
Pricing Pilot (SPP). The design is 
described later in the article. 

The SPP sample was ultimately 
based on a combination of factors, 
including the results of the 
Bayesian approach, the interests 
and issues raised by the 
stakeholders who voiced their 
views through a working group 
process, and practical 
considerations about timing and 
budget. 
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II. Ensuring Validity 

To be credible and useful to 
policymakers, pilots need to have 
both internal and external 
validity. Internal validity means 
that a cause and effect 

relationship can be established 
between the various treatments 
being tested and the variables of 
interest such as peak demand and 
overall energy consumption. The 
effect of all variables needs to be 
purged. External validity means 
that the pilot results can be 
extrapolated to the population of 
interest. Both require careful 
design and it is generally easier to 
ensure internal validity than to 
ensure external validity. 

T o aid in ensuring internal 
validity, we can draw upon 

three decades of experimentation 
with new rate designs and 
technologies. The "gold 
standard" of pilot design 
-mTpulates that every treatment 
(e.g., rate design or technology 
associated with the smart grid) 
that is being tested should also 
have a control associated with it 
so that a scientifically valid "but 
for" world can be constructed 
from which deviations can be 
successfully measured. Without 
this, pilots do not have internal 
validity. In other words, cause­
effect relationships cannot bE;l 
inferred with any precision ·<t1)od 
any conclusions derived frpm thE! 
pilot may be subject to the 'charge 
that they simply measure 
spurious correlation. It is also 
likely that genuine cause-effect 
relationships (e.g., higher prices 
lead to lower usage by X percent) 

'J"'"'~f 7=-" ... ··" ... -... 

may not be measured accurately 
because other factors such as a 
changing economy or weather 
may obscure the true relationship. 

The best way to create a control 
environment is to select a 

matching group of customers who 
can serve as a proxy for the 
behavior of the treatment group 
customers. In addition, to furthE;lf 
anchor the measurements, it is best 
to observe the treatment group 
before they are placed on the 

treatmehts~.hrother words, have 
pre-tt~itlneDt data on both the 
conttoli~pd treatment groups as 
weifl\st{~atment-period data on 
bot4'groups of customers. This 
h"ad~·t6 a balanced sample design. 
The§llme logic applies to test 
djstflbution automation; the test 
will be most definitive if we collect 
data from both the automated 
feeders, and from other, similar 
feeders that are not automated and 
will serve as "control" measures. 

In the past, pilots have been 
carried out without matching 
control groups and sometimes 
with no control groups at all. 
Others have been conducted 
with control groups but no 

pre-treatment measurements. All 

such inadequacies impair the 
internal validity of the pilot in 
varying degrees. Without a control 
group in the design, it is 
impossible to control for 
non-treatment variables that 
change between the pre-treatment 
ahd treatment periods (such as the 
,:Veather, the economy, or general 

.,.changes in attitudes toward 
energy use brought about by other 
exogenous factors). Without 
pre-treatment data, it is difficult to 
know if the treatment and control 
groups were balanced or 
unbalanced before the treatment 
was introduced. If systematic 
pre-treatment differences exist, 
they suggest that there is a 
self-selection bias in the sample 
that needs to be dealt with. 

These are the general principles 
of pilot design to ensure internal 
validity of results. As with most 
things in the real world, they 
serve as guideposts and not 
mandates. Utilities will need to 
temper these principles in actual 
execution given their time and 
resource constraints. 

P ilots must also have external 
validity so that their 

conclusions are transferable to a 
real world setting. In the case of 
the time-differentiated rates, it 
will be useful to know if such 
rates will ultimately be offered on 
a universal basis, a default rate 
basis with opt-out provisions, or 
an opt-in basis. The sampling 
strategy for the pilot will vary 
across these three scenarios. For 
example, if universal deployment 
is contemplated, then both the 
control and treatment groups 

July 2009, Vol. xxx, Issue xx 1040-6190/$-see front matter © 2009 Published by Elsevier Inc., doi:/1O.1016/j.tej.2009.06.012 5 



should be chosen randomly. 

On the other hand, if an opt-in 

deployment is envisioned, then 

opt-in sampling would be 

appropriate for both groups. In 

addition, a random control group 

may also be used to contrast the 

results with the general 

population. 

III. Summary of Existing 
Dynamic Pricing Pilots 

,;,m. ""-1, ..,.. .• -"'TC 

1· PSE&G Pilot ProgmEn 
1- CPU Pilo1 Progmm 
3- On(:nlO EuclID' Board Smart Price Pilot 

1- AnlCrcn UERcsidcNiai TOU Pilot 
8- ADRS Pilo! 
'). SlAtc\Vid<'! Pricing Pilot 

Recent smart grid pilots have 

examined the impacts of the 

various forms of dynamic pricing 

rate designs and have spanned a 

number of customer classes and 

utilities. Some of the pilots have 

also measured the impacts of 

enabling technologies (such as 

PCTs) on customer response. To 

develop a better understanding of 
the findings of these pilots and to 

guide a utility's pilot design, it is 

useful to briefly survey the designs 

and some of the results from the 

major dynamic pricing pilots.5 

Several of these dynamic pricing 

pilots are shown in Figure 5. 

4- Al13heim Critical Peak Pricing 13:(pcrimcnl 
!>-Idaho Residcutial Pil01 Program 

10- The Gulf Power Select Program 
11- Olympic Peninsula Project 
12·PSETOU Progmm 6- Encrgy.$tllllrt PriCillg Film 

Figure 5: Recent North American Dynamic Pricing Pilots 

T he following are particularly 

valuable in illustrating the 

potential impacts of the broad 

range of pricing and techn61l)~y 
options that could be offered: 

• California Statewide Pricing 
Pilot (SPP) 

• California Automated 
Demand Response .syst~m Pilot 
(ADRS) 

• California (Anaheim) Peak 
Time Rebate Experiment 

• Illinois's (C\licago) Commu­

nity Energy Coopera tive' s 

(CEC's) Enetgy:,Smart 
Pricing Pl~'l1~{, 

• Ond~icJ~nergy Board (OEB) 
,;iii' ~'-. 

Smart:PH~el'i1ot in Ottawa 

Each :of}hese pilots tested 

diffeterrtvariations of dynamic 

Table 1: Summary of Recent Dynamic Pricing Pilots 

Pilot name Location Utility Timeframe 

California SPP California (Statewide) PG&E, SCE, SDG&E 2003-2004 

rate designs and technologies, 

providing insights into what 

characteristics are more and less 

likely to be effective in achieving 

significant demand response. The 

design and conclusions of each of 

these four pilots are described 

below, followed by a summary of 
the findings (Table 1). 

A. The California Statewide 

Pricing Pilot 

California's three investor­

owned utilities, together with the 

state's two regulatory 

commissions, conducted the 

Customer Classes Rate Types 

ReSidential, C&I CPP, TOU, enabling 

technology 

California ADRS California (Statewide) PG&E, SCE, SDG&E 2004-2005 Residential, C&I CPP, enabling 

technology 

PTR Anaheim CPP Experiment Anaheim, California City of Anaheim 

Public Utilities 

CEC's ESPP 

DEB's Smart Price Pilot 

Chicago, Illinois 

OntariO, Canada 

Commonwealth Edison 

Hydro Ottawa 

Summer 2005 Residential 

2003-Present 

2006-2007 

Residential 

Residential 
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multi-million-dollar Statewide 
Pricing Pilot (SPP) to test the 
impacts of time-of-use (TOU) and 
CPP pricing. The experiment ran 
from July 2003 to December 2004 

and included about 2,500 

participants consisting of 
residential and small-to-medium 
commercial and industrial (C&I) 
customers. The pilot was 
conducted across a wide range of 
climate zones, from the mild San 
Francisco Bay area to the very hot 
and dry Central Valley. The SPP 
was, and still is, the largest pilot of 
its kind. 

The SPP tested two of the most 
common types of time-varying 
rate structures: 

• TOU-only rate, where the 
peak price was twice the value 
of the off-peak price. 

• CPP rate, where the peak 
price during the critical days 
was roughly five times greater 
than the off-peak price. Variations 
of the CPP were tested, in which 
the critical peak period was 
allowed to have a variable length. 

14% 
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" 0> 
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The effects of day-ahead and 
day-of notification were also 
tested. 

A high-level summary of some 
of the relevant findings of the 
pilot are as follows (Figure 6): 

• Peak reductions were signifi­
cant under both the CPP rate and 
the TOU rate. 

• Customers produced greater 
peak reductions under the CPP" 
than the TOU. 

• Residential customers 'Pro­
duced the greatest peak r~d\.j~:, 
tions, followed by medi1i~,~ized 

, '·"k, C&! customers. ,v",~. 

'\!t"'-:1&~ 
B. California Automated 
Demand Respo?$E!'S'y~tem 
Pilot 

Related to the'SE'P0as the 
California Aufomated Demand 
Response Sy§'te~ (ADRS) pilot. It 
was initiated in 2004 and 
extended through 2005. ADRS 
operated und~r a critical peak 
pricingtar'it\.that was supported 
withii r~sid~;"tial-scale, 

SmallC&1 MediumC&1 

Figure 6: Summary of Impacts from California SPP 

automated demand response 
technology. Participants in the 
pilot installed the GoodWatts 
system, an advanced home 
climate control system that 
allowed users to Web-program Q2 

their preferences for the control of 
home appliances. Under the CPP 
tariff, prices were higher during 
fh,e peak period (2 p.m. to 7 p.m. 

,oh weekdays). All other hours, 
weekends, and holidays were 
subject to the base rate. When the 
"super peak events" were called, 
peak price was three times higher 
than the regular peak price. 

R esuIts from the pilot showed 
that participants achieved 

substantial load reductions, 
through the use of the GoodWatts 
system. These reductions greatly 
exceeded reductions from 
customers who were exposed to 
the dynamic rates, but were not 
equipped with enabling 
technology. Ultimately, the pilot 
confirmed that enabling 
technologies are a significant 
driver of peak reductions. 
Figure 7 summarizes the impacts 
of enabling technology from the 
SPP and the ADRS. 

C. The Community Energy 
Cooperative's Energy-Smart 
Pricing Plan 

The Community Energy 
Cooperative's (CEC) Energy­
Smart Pricing Plan (ESPP), a 
residential real-time pricing (RTP) 
program, started in Illinois in 
2003. The ESPP initially included 
750 participants and expanded to 
nearly 1,500 customers by 2005. It 
is the only residential RTP 
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Figure 7: Impacts of Enabling Technologies from the California Pilots 

Weighted 
Average 

treatment group. While the pilot's 
title is somewhat of a misnomer, it 
actually tested the impacts of a 
relatively new rate design known 
as the peak time rebate (PTR). The 
PTR rewarded participants with a 
rebate of $0.35 for each kWh 
red~9t'ion below their estimated 
bi's.~1jne consumption (i.e., their 
preclrq.ted consumption level in 
·tQ~~i.joJfsence of the rebate). During 

.·f·~ll.other hours, their rate 
program that has been tested at 
any scale. The ESPP focused on 
low technology and tested the 
hypothesis that major benefits 
may result from RTP without 
expensive technology adoption. 
The ESPP design included: 

• Day-ahead announcement of 
the hourly electricity prices for the 
next day (i.e., customers were 
charged the day-ahead hourly 
prices). 

• Notification of "high-price 
days" via phone or email when 
the price of electricity was going 
to be over $0.10 per kWh. 

• A price limit hedge of $0.50 
per kWh for participants, 
meaning that the maximum 
hourly price was set at $0.50 per 
kWh during their participation in 
the program. 

• Energy usage education for 
participants. 

Overall, the pilot found that 
customers were more price­
responsive during the evening 
hours (4 p.m. to midnight) andon 
high-price days when they 
received additional notification. 
In response to time periods with 
the highest prices, customers 
reduced consumption by as much 
as 15 percent. During the summer 

months, there was a slight energy·· .• 
conservation effect of 4 percent," 

A :/:~~~:a;: ~~:i~:t ~."./ 
hour-to-hour variations in the.l' 
electricity price were not dri;i"rig 
changes in customers' '.' "P.'.,. 
consumption patterns. R<\!her) 
customers respondeqMo,bl;:'2h of 
time that were, on a\fe~~ger 
higher- or 10wer-BPi.h~d tGhes of 
day. Similarly, clistom'ers 

". 
responded to n~tifica~ion of high-
priced days, rathl'l~,thhn 
responding ,to a;spjke in a single 
hourly price:''Dhi~!Rnding 

<~"'tlh -''-'''1 
supports ",' c<linel\lsion that the 
complica1toi~.associated with 
offeri,}ga:J').hgtrly price may not 
be netes.s~!y, and a similar result 
COLl!d'bil';i.jo-;;hieved through a 
sirr\'pler tiine-period -based rate, 
s1.1ch;lSl1 CPP or TOU rate. 

D.Anaheim Critical Peak 
Pricing Experiment 

.. The City of Anaheim Public 
Utilities (APU) conducted a 
residential dynamic pricing pilot 
between June 2005 and October 
2005. A total of 123 customers 
participated in the experiment: 52 
in the control group and 71 in the 

r~d\ained unchanged from the 
.~~isting tariff. 

The results of the experiment 
showed that customers on the PTR 
reduced their peak consumption 
by an average of 12 percent. On 
days with high temperatures, the 
peak reduction was even greater. 
However, it should be noted that 
the sample size for this experiment 
was very smaiL While the peak 
impacts appear to be comparable 
to those under a CPP rate, that 
conclusion cannot be drawn with 
the same level of certainty with 
which the CPP impacts were 
estimated. Several experimental 
pilots to more precisely compare 
the impacts of CPP and PTR rates 
are currently under development. 

E. Ontario Energy Board 
Smart Price Pilot 

The Ontario Energy Board 
operated the residential Ontario 
Energy Board Smart Price Pilot 
(OSPP) between August 2006 and 
March 2007. The OSPP used a 
sample of Hydro Ottawa 
residential customers and tested 
the impacts from three different 
price structures: a pure TOU rate, a 
CPP layered on a TOU, and a PTR 
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layered on a TOU. A total of 373 
customers participated in the pilot: 
124 in TOU-only, 124 in TOU-CPP, 
and 125 in TOU-PTR. The control 
group had 125 participants with 
installed smart meters, but who 
continued to pay non-TOU rates. 

T he pilot found large average 
peak reductions under all 

three of the rate designs, with the 
CPP-TOU impact being the 
highest, followed by the PTR­
TOU, and then the pure TOU. 
However, standard errors 
surrounding these estimates were 
very large and it is difficult to draw 
meaningful conclusions from the 
results. What is more interesting to 
consider is the impact of real-time 
feedback monitors, which were 
also tested through the 
experiment. 

Real-time feedback monitors are 
installed in the home and can 
display information about current 
electricity consumption, the price 
of electricity, and the cumulative 
amount that has been spent on 
electricity. A specific type of 
real-time feedback monitor is the 
PowerCost Monitor by Blue Line 
Innovations. This device also 
allows customers to view an 
estimate of the carbon-dioxide 

emissions that are being produced 
as a result of their electricity 
consumption. The device can be 
self-installed on the electric meter 
by the customer. Information is 
then wirelessly transmitted to the 
monitor, which can be instalted· 
anywhere in the house. The 
PowerCost Monitor can be 
purchased and installed by 
individual customers for under 
$150. 

The effectiveness of the 

PowerCost Monitor was tested in 
the OSPP. Five hundred of Hydro 
Ottawa's customers were 
equipped with the PowerCost 
Monitor and data on the 
customers' electricity usage was 
collected over a period of two and 
half years. The results of the pilot 
suggested that, on average, 
customers with the device 
installed reduced their electr\dffy 
consumption by 6.5 percent (;i\ a j 

high lev@hQt~latistical 
1'+>11 ' 

signi£i'ca'Xree)" This reduction was 
susfifin(!~.?ver the duration of the 
piIOf:, . 

l;7\~t. ithin the sample group, 
.dV>_¥'J- customers with non­

elect~c space heating were found 
tQJf~duce consumption at a much 

hlgher level than those with 
electric space heating. This might 
suggest that for the customers with 
electric space heating, the feedback 
from the electric heating load 
would need to be separated from 
load at other end uses in order to 
effectively encourage conservation 
for these customers. Overall, 
customers expressed a high level 
of satisfaction with the device, 

with over 60 percent indicating 
that the device was useful in 
helping to conserve energy. These 
results were achieved in the 
absence of any accompanying 
incentives or price schemes. 

IV. Pilot Design 
PlJjnciples 

To provide a frame of reference 
regarding the principles of pilot 
design, we consider the case of a 
hypothetical utility called Smart 
Power that wishes to pursue a 
smart grid pilot. As it 
contemplates the development 
of a pilot, it would find it 
useful to begin by recalling the 
well-established principles of 
experimental design. The salient 
ones are summarized below: 

1. In order to measure the 
impact of the new rate designs 
(called "treatments" in the 
literature on social 
experimentation), the design 
should: (a) control for the effect of 
other factors such as weather and 
the economy, and (b) be capable of 
inferring what the customers on 
the treatments would have done in 
the absence of the treatments. 
Otherwise a valid cause-effect 
cannot be established between 
treatment and result. 

2. This is best accomplished in 
two ways: (a) by including a 
control group in the design, 
comprised of customers who are 
similar in all other respects to 
customers in the treatment group, 
and (b) by measuring the load 

profiles of customers in both 
the control and treatment 
groups before the new rates 
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(or "treatments") are initiated 
and during the time the treat­
ments are initiated. 

3. Sufficient numbers of 
customers should be recruited to 
fill the control and treatment 
groups. This often means that at 
least 100 customers should be in 
each cell. Too few customers in the 
cells will result in the inability 
to detect the effect of the treatment 
through statistical means (i.e., the 
signal-to-noise ratio will be poor). 

4. Customers should be 
randomly selected and assigned, 
to the extent practical, to the 
treatment and control groups. 
This will allow valid inferences to 
be drawn about the behavior of 
the target population. 

5. Data should be collected not 
only on customer load profiles but 
also on their socia-demographic 
characteristics and their attitudes 
toward energy use. 

6. Multiple treatments should 
be used to construct a model of 
customer price response (com­
monly called a "demand model") 
and to derive price elasticities; if 
only a single treatment is 
included, then the experiment 
will yield specific impact esti­
mates for that single treatment. 

7. Customers should be 
encouraged to stay in the pilot for 
as long as possible. 

S. If any payments need to be .. 
made to customers to ensure that 
they stay through the end of t~e 
pilot1 these payments should be 
(a) made only toward the end of 
the pilot, (b) unrelated to the level 
of their monthly usage, or (c) tied 
to the amount of bill savings 
generated by their actions. 

""om 
Treatment 

After 
Treatment 

I, True Impact Measure "" (T2• Tt) - (C2 - e,l 
~GoId S\WI<krd" fQr Ili$e$sitlg pro;rwn ImpilOb 

All other YJrtables ilrehe!d or trea1menllJllMlp 
Random asslgnmentto oonlrol ofll'utlnolflt group 

n.Alternative Measures of Impact 
(11T2 -Tj 

{2JTz 
(3)T2-CZ 

Figure 8: The Gold Standard for Experimental Design 

I f all these design principles aret q}~ics as suffering from a 
followed, then Smart Pow~r!s\'f :~~lf-selection bias. This is a fairly 

experiment will yield the best",,.:" common problem that can be 
possible measurements. A design' 'f easily rectified by building in 
that conforms to all of thes'iI.,.;1 time for pre-treatment data 
principles is often referred to as' collection. 
the "gold standard" ag!tiit~t.. • A simple design that only 
which other designs ca:ttb~ includes a treatment group after 
benchmarked. The "gold a treatment has been initiated. 
standard," which is This will yield the poorest results 
recommended fOli/Swart Power's since it does not have a control 
smart grid pilot, ,is illustrated in group, nor has it measured the 
Figure 8. To see why ,other treatment group before the 
designs may yieldinferior results, treatments were initiated. 
imagine the following deviations • A design that includes a 
from its precep:t~;. non-matching control group. This 

• A d~s;ghwithout a control is called a quasi-experiment, and 
group. In"th!scase, only before/ while it is better than having no 
after measurements can be carried control group at all, it is far from 
out orithetreatment group. Such a ideal. This problem is fairly 
result WQuld. be subject to criticism common in dynamic pricing 
forfhpt having netted out the experiments. It can be avoided 
effeds of other factors (such as the by using standard sampling 
weath!ir, the economy, or an techniques. 
'" ~ 

en~rgy crisis) that may have Through our extensive 
ch<liiged since the experiment experience in dynamic 
began. pricing pilot design we have 

• There is a control group but identified some key 
no pre-treatment measurements characteristics that are common 
are available. Such a design will among well-designed dynamic 
not allow an assessment of rates. Since well-designed rates 
whether the control and treatment produced significant peak 
groups are well-matched. The reductions and high levels of 
experiment may be regarded by customer acceptance, we propose 
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to incorporate these characteristics 
into the rates that are developed 
for the Smart Power pilot. 

Revenue neutrality: Each 
dynamic pricing rate option 
should be revenue neutral. In 
other words, in the absence of any 
load shifting, the rate should not 
lead to an over- or under­
collection of utility costs on a 
system-wide basis. At the 
customer level, some bills would 
increase and others would 
decrease, but the average 
customer's bill should not change. 

Short peak period: The on-peak 
or critical peak periods should be 
kept as short as possible, while still 
reasonably spanning the period 
during which the system peak 
occurs. A shorter peak period 
makes it easier for customers to 
shift load to the off-peak period 
when demand reductions are not 
as critical. For example, a four­
hour peak period from 2 p.m. to 
6 p.m. would reasonably allow 
customers to shift the use of some 
of their appliances, such as 
dishwashers or clothes dryers, 
before or after the period's 
duration. A long peak period 
would be less likely to induce 
customer response, as they would 
need to shift usage to the early 
morning or late night hours, 
requiring more significant 
behavioral changes. Many 
voluntary TOU rates in the 
industry feature very long peak 
periods, and it is no surprise'that 
very few customers are enrolled 
on such rates. 

Strong price signal: The rate 
should convey a strong price 
signal to customers. In other 

.,""\-, '7"'" "" pe, a·· .... oP 

words, the differential between capacity necessary to meet peak 
the peak and off-peak prices demands. The off-peak rate is a 
should be large. This large reflection of the lower average cost 
differential gives the customer a of meeting customer demand 
significant incentive to reduce during hours with lower loads. 
consumption when the price is This is what drives the differential 
high, and produces the ,,,,between the peak and off-peak 
opportunity for greater bill '!' r<ltes. 
savings by creating a large off- ",'«lpportunity for significant bill 

peak discount. The customer ~~vings: Customers are less likely 
needs to notice that there is a ':f~j) voluntarily enroll in the 
substantial difference in pric.~s" dynamic rates if they do not see an 
during these two periods. A ~~~p ,,' i opportunity for significant bill 

differelltiatsj',tlds a weak price 
signal td)"u;iomers and could be 
too rhsignificant for them to care 
al:1:6illch~hging their 
c(jn~.t'mption patterns. This 
p'rt'iblem was encountered by PSE 
in its pilot with TOU rates. The 
customers claimed to have 
reduced their peak usage by large 

"percentage amounts but this often 
'·'translated into trivial bill savings. 

Rates should reflect system costs: 

While a significant price signal is 
important, the rate should still 
reflect the cost of providing power 
to the customer. The peak period 
rate typically reflects both the 
higher average variable cost of 
generation, as well as the cost of 

savings. Similarly, once customers 
are on the rates, they are more 
likely to produce large peak 
reductions if doing so allows them 
to save money. To create such a 
rate, the off-peak discount should 
be large (or in the case of the PTR, 
the peak rebate should be large). 

Simplicity: Dynamic pricing 
rates should be easy for the 
customer to understand. If the 
customer does not understand 
how the pricing works, or is 
overburdened with information, 
then he or she will not be able to 
appropriately respond to the 
price signals and shift load. The 
residential RTP is an example of a 
rate design that has been shown to 
provide more information than 
customers need to provide 
demand response. 

v. Developing an 
Implementation Plan 

The smart pilot will allow 
Smart Power to quantify the 
impact of dynamic rates, 
incentive plans, and technologies 
on its system and its customers. 
To illustrate the steps involved in 
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designing and implementing such 
a pilot, we have developed a 
strawman pilot design. This is a 
high-level description. The final 
pilot design will need to be 
developed in detail through a 
number of working sessions with 
Smart Power staff, the public 
service commission staff, and any 
other stakeholders that are 
involved in the public process who 
usually attend the development 
and execution of such projects. 

However, this strawman design 
is useful for understanding the 
pilot design process, highlighting 
some of the important decisions to 
be made in designing the pilot, and 
identifying some of the questions 
that could potentially be 
answered through the pilot's 
implementation. 

Some of the key features of our 
strawman pilot design include: 

• Testing a variety of dynamic 
rate designs. 

• Including high and low 
variations of each rate type. 

• Measuring the impact of 
enabling technologies. 

• Measuring the difference in 
response from single-family and 
multi-family homes. 

Our strawman pilot design is 
summarized in the remainder of 
this section. 

A. The rate designs 

There are a wide variety of 
dynamic rates that meet the rate 
structure design parameters 
that Smart Power has identified 
for the pilot. A description of 
these rate designs is provided 
below. 

Time-oj-Use (TOU): A static 
TaU rate divides the day into 
time periods and provides a 
schedule of rates for each period. 
For example, a peak period might 
be defined as the period from 
12 p.m. to 6 p.m. on weekdays, 
with the remaining hours being 
off-peak. The rate would be 
higher during the peak period 
and lower during the off-peak, 

provides them with a price signal 
that more accurately reflects 
energy costs as well as the 
opportunity to minimize their 
electriCity bills. This rate form is 
particularly effective when 
eleyated supply costs are limited 
tOj!'J'nly a few (under 100) hours of 

tl'l,~:,year, and their onset is quite 
1p~ed\l:;table. 
ii",!:lJ,dk Time Rebate (PTR): If a 

mirroring the variation in the cosW 'e~p tariff cannot be rolled out 
of supply. There would be no' .bl;ffiause of political or regulatory 

uncertainty asto.,.what the rates 
would bee/and when they would 
be incurred; . 

Critlq1l1fe(ll> Pricing (CPP): 
Under:a1C:PP rate, participating 
custorrre~s pay higher peak­
peii()d prices than they would on 
their (ltHerwise applicable tariff 
during peak hours on the few 

4~ys'when wholesale prices are 
theihighest. In return, the 

customers pay a lower off-peak 
price that more accurately reflects 
lower off-peak energy supply 
costs for the duration of the 
season (or year). Thus, the CPP 
rate attempts to convey the true 
cost of power generation to 
electricity customers, and 

l:constraints, some parties have 
suggested the deployment of 
PTR. Instead of charging a higher 
rate during critical events, 
participants have the opportunity 
to buy through at the existing rate; 
however, they have a significant 
incentive for reducing 
critical-peak usage in the form of 
cash rebate that is expressed in 
cents per kWh of load reduction 
during the critical period. This, of 
course, requires the establishment 
of a baseline load from which the 
reductions can be computed. 

CPP-Variable (CPP-V): CPP-V is 
similar to the CPP rate, with the 
exception that the duration of the 
peak period is not fixed. The event 
notification is generally provided 
to participants on a day-ahead 
basis at the same time that they are 
notified of the upcoming critical 
event. This provides utilities and 
ISOs with the flexibility to respond 
to emergencies and high priced 
periods of varying lengths 
occurring at different times of the 
day. 

VariabLe CPP (VPP): It is also 
possible to vary the critical peak 
price, rather than locking it in at a 
pre-specified level. CPP rates with 
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this characteristic are called VPP 
rates. They provide a price signal 
to customers that more accurately 
reflects contemporaneous system 
conditions and marginal costs. 

Real-Time Pricing (RTP): 

Participants in RTP programs pay 
for energy at a rate that is linked to 
the hourly market price for 
electricity. Depending on their 
size, participants are typically 
made aware of the hourly prices 
on either a day-ahead or hour­
ahead basis. Typically, only the 
largest customers -above 1 MW 
of load - face hour-ahead prices. 
These programs post prices that 
most accurately reflect the cost of 
producing electricity during each 
hour of the day, and thus provide 
the best price signals to 
customers, giving them the 
incentive to reduce consumption 
at the most expensive times. Over 
70 utilities have offered RTP 
either in a pilot or as a permanent 
program. 

I n our strawman pilot design, 
we are proposing that a TOU, 

CPP, and PTR be tested. RTP, 
CPP-V, and VPP were excluded 
from the list of rates in order to 
reduce the number of customers 
that would need to be recruited to 
the pilot. Generally, these rates 
have been shown to provide mor~: 
information than customers can 
use when making their 
consumption decision. In other 
words, residential customers terid 
to respond to prices in time'blockii 
rather than on an hour-by-hour 
basis. However, it may be 
desirable to include one or more 
of these rates in the final pilot 
design. 
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Figure 9: Residential Customer Price Response Curves on Critical Days 

B. "Highrl and JJlow" rates 

For econometriSPl,!~poses, 
multiple rate cohfigprations will 
be chosen withine.,,-,h;rate design. 
This will allow. the estimation of 
customer derllandcurves and 
price elasti~iti~s;.,as is common in 

such exp~riinel~t.al pilots. 
Specifically/there will be a "high" 
and a "low;'. scenario for each rate 

. >., <~H' 

desigh. 'j1he"high" rate will have a 
higJ{~t,on-peak price and, as a 
re$tilt:of the revenue neutrality 
cons,~ti'int, a lower off-peak price. 

.'theJ!'[Clw" rate will have a lower 
,on-peak price and higher off-peak 

, ", 
price. 

T he purpose of these "high" 
',,/: and "low" rate scenarios is to 

":";produce sufficient variation in 

data for econometric analysis. 
With an estimation of customer 
response at more than one price 
level, it is possible to estimate the 
curvature of the customer price 
elasticity, rather than simply 
assuming that customer response 
increases linearly with an increase 

in price at all price levels. In fact, 
the most thorough pricing 
experiments have suggested that 
peak reduction increases as the 
peak rate increases, but the 
reductions grow at a rate that gets 
incrementally smaller. This is 
illustrated in Figure 9.The design 
of the rates is an important aspect 
of the pilot. To ensure that the rates 
are designed appropriately, their 
impacts will be simulated using 
the Price Impact Simulation Model 
(PRISM). Simulation of the rate 
impacts is a critical step in the rate 
design process, as it ensures that 
the high and low rates are 
sufficiently different in order to 
produce a wide range of customer 
response. This is necessary from a 
statistical analysis perspective to 
estimate a robust price response 
curve. 

C. Enabling technology 

Enabling technologies such as 
programmable communicating 
thermostats (PCTs) and AIC 
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switches automate demand 
response and increase the 
effectiveness of dynamic prices in 
promoting demand reduction. 
Evidence from several pricing 
pilots reviewed in a recent survey 
reveals that while CPP tariffs lead 
to a drop in peak demand of 13 to 
20 percent, pairing pricing tariffs 
with enabling technologies lead to 
a peak demand reduction in the 
range of 27 to 44 percent6 

Figure 10 demonstrates the 
impact of enabling technologies on 
critical peak demand reduction in 
a recent pilot program. 

G iven this evidence, it is 
important to identify the 

role of enabling technologies on 
price response by equipping 
certain customers with these 
technologies and testing the 
incremental impact. This is 
possible by having another group 
of customers who are also subject 
to the dynamic rates but do not 
have enabling technologies. Any 
pricing pilot design aimed at 
testing the incremental impact of 
enabling technologies should have 
at least two treatment samples: one 
with enabling technologies and 
the other without. 

Single-Family vs. Multi-Family 
SOcio-demographic 

characteristics of customers may 
impact their price responsiveness. 
The customers' type of residence 
is one such characteristic that can 
potentially impact their 
sensitivity to dynamic rate 
designs. Customers who live in 
single-family homes can be 
expected to have more control 
over their electricity consumption 
patterns, and therefore have more 

;."" i!J.., ... ,tt,. uS" =r= .. 

O%~~ __ --________________________________________ ~ 

-: ---- PTRL ---------PTR··· H-------------------------------
,- Critical 
'Price - Clilical ....••....•.••• ~~:= .... : ....... : .•... : .... :: .. 
~ . ..--------. . 
... : .. ~ .... 

•...... :.. . ....... ~.. 'In :.:::· . --... ... 
.................................. , ............ ~~ ......... .. --
0.15 0,35 0.55 0.75 0.95 1.15 1.31 1.51 1.71 1.90 2.10 2.30 2.50 2.70 2.90 3.10 

Critical Peak Rice ($k 'v'Al) 

l OrlglnaIPrice=O.146%kWl 
• ___ ....... ________________ • ___ n •• _______ n ___ n __________ ~"._, __ . ___________ .. __ .m_._. ________________ ,_~ Peak. Price=(l.146 %klMl otf- Peak Prk:e=O.l46 %kWl J 

Figure 10: Impact of Enabling Technologies on Demand Response 

potential to respond to the 
dynamic prices. Alt~rnatively, 
customers who live Tn multi­
family homes can/be expected to 
be less price· responsive since they 
may not internillize all the 
benefits from ch'l,nging their 
consumption p"tterns. Moreover, 
they generailyh,qye less control 
over they§~ge<p~tterns of 
common <ele~.tricity consuming 

equipme~t. 

Low 11'1cgme vs. High Income 

T he:in~ome of the 

par;~cipating customers is 
anothersocio·demographic 
characteristic that may impact the 
degrec~ of price-responsiveness. 

Customers in the low-income 
. brackets are generally more price· 
inelastic in terms of their necessity 
purchases. Electricity 
consumption is a necessity 
purchase for low-income 
customers who usually consume 
the required minimum and 
therefore don't have much 

price-responsiveness potential. 
Also, these customers do not 
possess much of the electrical 
equipment whose load they could 
shift from peak to off-peak 
periods. On the other side, these 
customers could be more likely to 
shift any possible load from peak 
to off-peak in order to be able to 
realize the financial gains. Which 
of these effects would dominate is 
an empirical question. High­
income customers have much 
more discretionary electricity 
consumption with which they can 
respond to dynamic rates. 
However, they may not be as 
highly motivated as low-income 
customers to realize the financial 
gains by changing their 
consumption patterns. Again, 
resulting impact can be 
determined through empirical 
investigation. 

Description of Sample Selection 
Smart Power is required by 

legislation to carry out a pilot 
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Table 2: Illustrative Experimental Design dynamic prices and other pilot 
Low/High Enabling No Enabling Multi- Low features. Table 2 presents a 

Group Rate Technology Technology family Income Control TOTAL strawman experimental design 
-

TOU Low Rate 150 150 - - - 300 for Smart Power. There are 18 

High Rate 150 150 150 150 - 600 program cells, each containing 

CPP Low Rate 150 
150 customers, and a control 

150 - - - 300 
"group cell containing 300 

High Rate 150 150 150 150 - 600 'i 
cj:lstomers. In total, there are 3,000 

PTA Low Rate 150 150 - - - 300 .cllI;tomers in the experiment 
High Rate 150 150 150 150 - 600 ,,' ~~mple. 

TOTAL 900 900 450 450 300 3000" .•• i'This is, of course, only an 
b. illustrative design. A complete 

and successful experimental 
program with a minimum sample response curves can be eS\~ingt~~'" 

" , 'C" 

design is only possible after 
size of 2,750 customers. In light of with statistical precision a;lJ,I.kso sufficient interaction with the 
the principles discussed above, we that results can be obtaifil'!~ fill-'; utility through which the 
have crafted an illustrative rates other than just the',~ies that priorities and intricacies of the 
experimental design for Smart are included in the expericient. utility can be determined. A series 
Power. In each pricing pilbF of focus group meetings may be I n this strawman design, we experiment, a grmip·.(ltgimtrol required with potential 

propose to test the impacts of customers is reqUiqed FO anchor participants to understand their 
enabling technologies, multi- the impacts of t)'tedYl\flmic prices. priorities and the incentives to 
family home ownership, and low These controli.customers remain which they react.For reference 
income on low and high rates from on the existirlg'rates and act as a purposes, the design parameters 
each of the TOU, CPP, and PTR com parison' base representing of a few other pilot programs are 
rate designs. It is necessary to have how the treat.m'lnt customers included in the appendix to this 
low and high rates so that price would J:jehflvebut for the article .• 

Appendix A. Experimental Designs from Recent Pricing Pilots 

Table 3 Baltimore Gas and Electric (BGE) SEP Experimental Design 

Enabling Technology 

Orb Only Orb + AlC Switch No Enabling Technology Control TOTAL 

DPP Normal Rate - 111 148 - 259 

PTR Low Rate 141 113 126 - 380 

High Rate 137 118 127 - 382 

TOTAL 278 342 401 354 1375 

Track A: Random Sampling With Opt Out DeSign 

Control CPP-F CPP-F (info) CPP-V (SDG&E) Info Only TOU Total 

ReSidential 

Zone 1 63 52 0 0 0 50 165 

Zone 2 100 188 0 0 0 50 338 

Zone 3 207 188 0 125 126 50 696 

July 2009, Vol. xxx, Issue xx 1040-6190/$-see front matter © 2009 Published by Elsevier Inc., doi:/10.1016/j.tej.2009.06.012 15 



hilll!l •• ~~.:.1 -n" •. I;;l"",'" 

Appendix A (Continued) 

Track A: Random Sampling With Opt Out Design 

Control CPP-F CPP-F (info) CPP-V (SDG&E) Info Only TOU Total 

Zone 4 100 114 0 0 0 50 264 

Total 470 542 0 125 126 200 1,463 

Commercial CPP-V (SCE) TOU (SCE) 

SCE 

<20 kW 88 0 0 58 0 50 196 

>20 kW 88 0 0 80 0 50 218 

Total 176 0 0 138 0 100 414 

All Sectors 

Total 646 542 0 263 126 300 1,877 

Track B: SF Cooperative 

Residential Control CPP-F CPP-F (Info) CPP-V Info Only TOU Total 

PG&E 63 64 126 0 0 0 253 

Total 63 64 126 0 0 0 253 

Track C: AS 970 Sub-Sample 

Residential Control CPP-F CPP-F (info) CPP-V (SDG&E) Info Only TOU Total 

SDG&E 20 0 0 125 0 0 145 

Total 20 0 0 125 0 0 145 

Commercial CPP-F CPP-F (Info) CPP-V (SCE) Info Only TOU Total 

SCE 

<20 kW 42 0 0 56 0 0 98 

>20 kW 42 0 0 76 0 0 118 

Total 84 0 0 132 0 0 216 

All Sectors 

Total 104 0 0 257 0 0 361 

Summary 

Control CPP-F CPP-F (Info) CPP-V Info Only TOU Total 

Total Sample Size 813 606 126 520 126 300 2,491 

Number of Residential Customers in the Experiment and Estimating Sample 

Load Data Load & MC Ownership Data 

Customer Climate Summer Summer Summer Summer 

Segment Zone Track Tariff 2003 Winter 2004 2003 Winter 2004 

R 1 A Standard 68 62 64 51 47 48 

R 2 A Standard 106 107 108 90 92 90 

R 3 A Standard 105 108 108 89 88 81 
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Appendix A (Continued) 

Number of Residential Customers in the Experiment and Estimating Sample 

Load Data Load & AlC Ownership Data 

Customer Climate Summer Summer Summer Summer 

Segment Zone Track Tariff 2003 Winter 2004 2003 Winter 2004 

R 4 A Standard 106 109 105 87 83 81 

R 1 A CPP-F 59 59 61 54 54 56 

R A CPP-F 212 214 217 205 206 202 

R 3 A CPP-F 214 215 219 200 201 203 

R 4 A CPP-F 129 128 136 121 120 124 

R 2 A CPP-V 58 53 

R 3 A CPP-V 41 40 

R 2 A Info Only 70 64 68 65 60 64 

(Standard) 

R 3 A Info Only 68 68 69 63 62 63 

(Standard) 

R 1 A TOU 57 57 58 55 55 56 

R A TOU 56 56 57 54 54 55 

R 3 A TOU 58 57 63 54 53 58 

R 4 A TOU 55 55 56 53 53 53 

R 2 A Standard 26 21 

R 3 A Standard 17 16 

R 1 B Info Only 71 53 52 48 34 33 

(Standard) 

R 1 B CPP-F 135 133 133 104 102 102 

R 1 8 CPP-F 78 78 78 71 71 71 

R 2&3 C Standard 20 21 20 18 19 19 

R 2&3 C CPP-V 131 142 135 121 127 124 

R 2&3 C Standard 94 97 87 80 80 77 

Endnotes: , th~e implementation of the California sample cell is used in determining the 
Statewide Pricing Pilot. See Report of optimal experimental design, this cost-

1. Dynamic pricing rates are Working Group 3 to Working Group effectiveness estimate in no way 
discussed by Ahmad Faruqui and ' ,', . I, "Proposed Pilot Projects and prejudges the ultimate cost-
Ryan Hledik in The Power of Dynamic Market Research to Assess the effectiveness results following 
Pricing, ELEC L April 2009, andjn Potential for Deployment of Dynamic implementation of the pilot and based 
Ahmad Faruqui and Ryan Hledik; Tariffs for Residential and Small on those experimental results. 
Transitioning to Dynamic Pricing" PUB. Commercial Customers," Dec. 10, 
UTIL. FORTNIGHTLY, March 2009. 2002. s. For more information, see Ahmad 

Inclining block rates are discussed in Farugui and Sanem Sergici, Household 

Ahmad Faruqui's Inclining Toward 3. HOWARD RAIFFA AND ROBERT Response to Dynamic Pricing of 

Energy Efficiency, PUB. UTlL. SCHLAIFER, ApPLIED STATISTICAL DECiSION Electricity: A Survey of the 

FORTNIGHTLY, Aug. 2008. THEORY (MIT Press, 1961). Experimental Evidence, Jan. 2009, at 

2. This section heavily relies on a 4. It is important to note that while 
http:/ /www.hks.harvard.edu/hepg/ 

Working Group 3 Report preceding estimated cost-effectiveness of each 6. Id. 
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